πŸ“’ Author : Charu C. Aggarwal
πŸ“’ Publisher : Springer
πŸ“’ Release Date : 2018-08-25
πŸ“’ Pages : 497
πŸ“’ ISBN : 9783319944630
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category : Computers

SYNOPSIS : This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.


πŸ“’ Author : Umberto Michelucci
πŸ“’ Publisher : Apress
πŸ“’ Release Date : 2018-10-21
πŸ“’ Pages : 410
πŸ“’ ISBN : 9781484237908
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category : Computers

SYNOPSIS : Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). What You Will Learn Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset Who This Book Is For Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.


πŸ“’ Author : Md. Rezaul Karim
πŸ“’ Publisher : Packt Publishing Ltd
πŸ“’ Release Date : 2018-06-29
πŸ“’ Pages : 436
πŸ“’ ISBN : 9781788996525
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category : Computers

SYNOPSIS : Build and deploy powerful neural network models using the latest Java deep learning libraries Key Features Understand DL with Java by implementing real-world projects Master implementations of various ANN models and build your own DL systems Develop applications using NLP, image classification, RL, and GPU processing Book Description Java is one of the most widely used programming languages. With the rise of deep learning, it has become a popular choice of tool among data scientists and machine learning experts. Java Deep Learning Projects starts with an overview of deep learning concepts and then delves into advanced projects. You will see how to build several projects using different deep neural network architectures such as multilayer perceptrons, Deep Belief Networks, CNN, LSTM, and Factorization Machines. You will get acquainted with popular deep and machine learning libraries for Java such as Deeplearning4j, Spark ML, and RankSys and you’ll be able to use their features to build and deploy projects on distributed computing environments. You will then explore advanced domains such as transfer learning and deep reinforcement learning using the Java ecosystem, covering various real-world domains such as healthcare, NLP, image classification, and multimedia analytics with an easy-to-follow approach. Expert reviews and tips will follow every project to give you insights and hacks. By the end of this book, you will have stepped up your expertise when it comes to deep learning in Java, taking it beyond theory and be able to build your own advanced deep learning systems. What you will learn Master deep learning and neural network architectures Build real-life applications covering image classification, object detection, online trading, transfer learning, and multimedia analytics using DL4J and open-source APIs Train ML agents to learn from data using deep reinforcement learning Use factorization machines for advanced movie recommendations Train DL models on distributed GPUs for faster deep learning with Spark and DL4J Ease your learning experience through 69 FAQs Who this book is for If you are a data scientist, machine learning professional, or deep learning practitioner keen to expand your knowledge by delving into the practical aspects of deep learning with Java, then this book is what you need! Get ready to build advanced deep learning models to carry out complex numerical computations. Some basic understanding of machine learning concepts and a working knowledge of Java are required.


πŸ“’ Author : Dipanjan Sarkar
πŸ“’ Publisher : Packt Publishing Ltd
πŸ“’ Release Date : 2018-08-31
πŸ“’ Pages : 438
πŸ“’ ISBN : 9781788839051
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category : Computers

SYNOPSIS : Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.


πŸ“’ Author : Alex Galea
πŸ“’ Publisher : Packt Publishing Ltd
πŸ“’ Release Date : 2018-08-31
πŸ“’ Pages : 334
πŸ“’ ISBN : 9781789806991
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category : Computers

SYNOPSIS : A hands-on guide to deep learning that’s filled with intuitive explanations and engaging practical examples Key Features Designed to iteratively develop the skills of Python users who don’t have a data science background Covers the key foundational concepts you’ll need to know when building deep learning systems Full of step-by-step exercises and activities to help build the skills that you need for the real-world Book Description Taking an approach that uses the latest developments in the Python ecosystem, you’ll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before we train our first predictive model. We’ll explore a variety of approaches to classification like support vector networks, random decision forests and k-nearest neighbours to build out your understanding before we move into more complex territory. It’s okay if these terms seem overwhelming; we’ll show you how to put them to work. We’ll build upon our classification coverage by taking a quick look at ethical web scraping and interactive visualizations to help you professionally gather and present your analysis. It’s after this that we start building out our keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data. By guiding you through a trained neural network, we’ll explore common deep learning network architectures (convolutional, recurrent, generative adversarial) and branch out into deep reinforcement learning before we dive into model optimization and evaluation. We’ll do all of this whilst working on a production-ready web application that combines Tensorflow and Keras to produce a meaningful user-friendly result, leaving you with all the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively. What you will learn Discover how you can assemble and clean your very own datasets Develop a tailored machine learning classification strategy Build, train and enhance your own models to solve unique problems Work with production-ready frameworks like Tensorflow and Keras Explain how neural networks operate in clear and simple terms Understand how to deploy your predictions to the web Who this book is for If you're a Python programmer stepping into the world of data science, this is the ideal way to get started.


πŸ“’ Author : Francois Chollet
πŸ“’ Publisher : Pearson Professional
πŸ“’ Release Date : 2018
πŸ“’ Pages : 360
πŸ“’ ISBN : 161729554X
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category : Computers

SYNOPSIS : Introduces deep learning systems using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples.


πŸ“’ Author : Will Ballard
πŸ“’ Publisher : Packt Publishing Ltd
πŸ“’ Release Date : 2018-07-31
πŸ“’ Pages : 96
πŸ“’ ISBN : 9781789532517
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category : Computers

SYNOPSIS : Explore TensorFlow's capabilities to perform efficient deep learning on images Key Features Discover image processing for machine vision Build an effective image classification system using the power of CNNs Leverage TensorFlow’s capabilities to perform efficient deep learning Book Description TensorFlow is Google’s popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow’s capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. What you will learn Build machine learning models particularly focused on the MNIST digits Work with Docker and Keras to build an image classifier Understand natural language models to process text and images Prepare your dataset for machine learning Create classical, convolutional, and deep neural networks Create a RESTful image classification server Who this book is for Hands-On Deep Learning for Images with TensorFlow is for you if you are an application developer, data scientist, or machine learning practitioner looking to integrate machine learning into application software and master deep learning by implementing practical projects in TensorFlow. Knowledge of Python programming and basics of deep learning are required to get the best out of this book.


πŸ“’ Author : Douwe Osinga
πŸ“’ Publisher : "O'Reilly Media, Inc."
πŸ“’ Release Date : 2018-06-05
πŸ“’ Pages : 252
πŸ“’ ISBN : 9781491995792
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category : Computers

SYNOPSIS : Deep learning doesn’t have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you’ll learn how to solve deep-learning problems for classifying and generating text, images, and music. Each chapter consists of several recipes needed to complete a single project, such as training a music recommending system. Author Douwe Osinga also provides a chapter with half a dozen techniques to help you if you’re stuck. Examples are written in Python with code available on GitHub as a set of Python notebooks. You’ll learn how to: Create applications that will serve real users Use word embeddings to calculate text similarity Build a movie recommender system based on Wikipedia links Learn how AIs see the world by visualizing their internal state Build a model to suggest emojis for pieces of text Reuse pretrained networks to build an inverse image search service Compare how GANs, autoencoders and LSTMs generate icons Detect music styles and index song collections


πŸ“’ Author : Carlos Perez
πŸ“’ Publisher : Lulu.com
πŸ“’ Release Date :
πŸ“’ Pages :
πŸ“’ ISBN : 9781365879234
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category :

SYNOPSIS :


πŸ“’ Author : David Feldspar
πŸ“’ Publisher : Independently Published
πŸ“’ Release Date : 2018-02
πŸ“’ Pages : 32
πŸ“’ ISBN : 1980285799
πŸ“’ Available Language : English, Spanish, And French
πŸ“’ Category : Computers

SYNOPSIS : How can deep learning, even machine learning, help your organization? The lofty expectations about machine learning and deep studies and projects have skyrocketed, and yet, there is so much left to be said about the methods that trigger the higher-functioning corners of the human neural networks. With so many data and investments on the line, how can we deepen our understanding of these subjects? That is where this guide will take you to the next level. It touches on exactly those problems and methods that optimize your financing and comprehension of the little details that often get overlooked. Furthermore, you will read about subtopics like: Popular machine learning methods that are being applied today. Data mining processes that you can easily use for your own company or individual proprietorship. Insights in supervised versus unsupervised data mining. Machine learning tactics and know-how. The five best steps to implement unsupervised big data machine learning. Ten ways to apply predictive analyses to the banking sector. Financial optimization techniques for regular processes. These machine learning, data mining, and other financing strategies are an intellectual, analytical goldmine you can feast your mind on